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1. For an increasing sequence of measurable sets { £, }, if there exists ng s.t. m(E,,) = oo, then by monotonicity
of measure, the equality holds. If m(E,,) < oo for all n € N, define 41 = Fy, A, = E, \ E,,_1 for n > 2. By
monotonicity of E,, {A4,} are mutually disjoint and U2, A4,, = U2 E,,. By countable additivity of m,

m(U, By) =m(U3 An)
=m(Ey) + Z[m(En) - m(En*I)]

= lim [m(E,) — m(E1)] + m(E1),

n—oo

result follows.

For a decreasing sequence of measurable sets {E,} with m(F;) < oo, Let D,, = F1 \ E,, hence {D,} is an
increasing sequence of measurable sets. It follows from above that

m(UyZ,Dy) = lim m(D,).

n— oo
Hence, note that US2 ;1 D,, = E1 \ N°2, E,, and m(D,,) = m(E;) — m(E,), we have

m(Ey \ Ny, Ey) = lim [m(Ey) — m(E,)].

n—00

By measurability of N2, E,, and m(E;) < oo, result follows.

2. Let c € R,
{z € E|max{fi, fo}(z) > ¢} = {z € E|fi(z) > c} U {x € E|fa(x) > c} € M. Hence, max{fi, fa} € MF.
In particular, for a sequence of measurable functions {h,}, define g = sup,, h,, we have, by M being a
o-algebra,
{z € Elg(x) > ¢} = U2 {z € Elh,(x) > c} € M.

ie. g € MF. Similarly, we have inf h,, € MF. Now, define hj, = sup, > fn € MF. Hence, f = lim, f, =
limsup f,, = infy, hy € MF.

3. For all n € N, define E,, = {x € E : |g(x)| > n}. Note that, for all n,
m({z € E:|g| = 0}) = m(NpEx) < m(E,).

Since g € L1(E),

o> [ gl [ o)z mm(E,).
E E,
Result follows.

Now, we have f and g are finite a.e. Except on a null set N, g — f is well defined, we can assign any value for



g—f on N. Note that |g— f| < |f|+]g| a.e., by monotonicity and linearity of Lebesgue integral, g— f € L1 (E).
By linearity, [,(9— f) = [p9— [gf=0.9—f>0ae,letneN,let K, ={z € Elg— f>1},

o=[E<g—f>z m(K,) > 0

S|

. i.e. m(K,) =0 for all n, hence,

m({z € E:g—f>0}) =m(U,Ky) <> m(K,)=0.

. (i) Since f > 0, A(E) > 0 for all E € M. Since m(¢) = 0, we have A(¢) = 0. It remains to check countable
additivity. Let {E,}, mutually disjoint, be a sequence in (). Note that for each N € N, ay := fxun_ g, = 0.

This sequence is monotone increasing in IV, converges a.e. to fxu= g, > 0as N — oco. Hence, we can apply
monotone convergence theorem,

0o N
3o M(E) =l 3ONE) < i [ e = [Pz = [ 7=AURE)

lE"

n=

(ii) For each n € N, define h,, : R = R by h, = min{f,n}. Check that, h, > 0, monotonically increasing in
n, converges a.e. to f as n — co. By Monotone Convergence Theorem, we have

lizn/Rhn:/Rf<oo.
/Rf—/RhN<e.

Let 0 < 6 < 55, if A € M with m(A) < §, by linearity and monotonicity,

3N
A(A):/Af:/Af*/AhN+/AhNS/Hg(fth)+e/2<e.

A= {z € Ela > D_f(x) = sups~ginfocs—y<syefab) f(y;:i(as)} This is well defined since E C (a,b).

By definition of sup and inf, let * € A, let § > 0, there exists ds, € (0,6) small enough such that

f = di’;) — /@) < aand (x — d;,x] C G. Then, let C = {(z — d5,2]),0 > 0,z € A}. Result follows.
—Us,z

Hence, let € > 0, there exists N s.t.




